
Webinar	Breakdown:	
• Introduc*on	to	pseudorandom	number	generator	(LFSR)	code	
• Review	of	Verilog	wrapper	interface	to	microcontroller	
• Simula*on	with	Mentor	Graphics®	ModelSim®	
• Synthesis	using	Intel®	Quartus®	Prime	Lite	
• Upload	to	FPGA	via	the	Arduino	IDE	
• Overview	soKware	library	
• Run	simple	sketch	to	demonstrate	new	FPGA	hardware

OpenXLR8:	
How	to	Load	Custom	FPGA	Blocks

Webinar	Replay	
from	

January	12,	2017



Presenters

Jason	Pecor Bryan	Craker
Harlie	Juedes



•Laptop	with	Windows	or	Linux	(Tools	not	supported	on	Mac)	

• Installed	Tools:	
–Arduino	IDE	
– Intel	Quartus	Prime	Lite	Edi*on		
• Includes	Modelsim-Intel	FPGA	Edi9on	and	Max	10	FPGA	support	

• 	A	USB	Mini	cable	for	connecRng	XLR8	board	to	laptop

Pre-Requisites

You	Will	Need:

Follow	the	instructions	here:		
http://www.aloriumtech.com/openxlr8/	



• LFSR	Code	Package:	

h"ps://github.com/AloriumTechnology/XLR8LFSR	

• Arduino	Board	Library	URL:	
h"ps://raw.githubusercontent.com/AloriumTechnology/Arduino_Boards/master/package_aloriumtech_index.json

LFSR	and	Board	Library	URLs

Rename	to	XLR8Build	

Move	to	Arduino	Libraries	file

https://raw.githubusercontent.com/AloriumTechnology/Arduino_Boards/master/package_aloriumtech_index.json


• Go	to	Sketch	->	Include	Library	->	Manage	
Libraries…	

• Search	for	“XLR8”	and	install	XLR8Core	
and	XLR8BuildTemplate	

• Go	to	Tools	->	Board	->	Boards	Manager…	
• Search	for	“XLR8”	and	install	Alorium	
XLR8	Boards

Arduino	IDE	Setup



Applica*on	Accelerator	&	Development	Board	

Designed	for	Arduino	Developer	Community	

Based	on	Intel®	MAX®	10	FPGA	

Programmable	with	Arduino	IDE

What	is	XLR8?

Field-programmable 

Gate Array



Why	use	FPGA?

HIGHER-PERFORMANCE

FASTER
Acceleration

Offload



Board	Level	Block	Diagram

Analog	I/OPower/Reset

Barrel		
Connector

5V		
Reg

3.3V		
Reg

USB

OSC

ISP

JTAG

Op*onal	
EEPROM

Digital	I/O

3.3V/5V	Level	ShiK Analog	Preamps

3.3V/5V	Level	ShiK

FTDI

I2C

U169	Package



FPGA	Block	Diagram

AVR		
Processor	Core

Program	Memory	
	and	Flash

Data	
Memory

ADC

Timer	
PWM

I2C

SPI

UART

PLL

Config	Flash

Image	
1

Image	
0

Reconfig

Xcelerator	Blocks	
(	Programmable	FPGA	Fabric	)

Pi
n	
M
ux
in
g

Pr
oc
es
so
r	B

us



An	Xcelerator	Block	(XB)	is	an	op*mized	hardware	
implementa*on	of	a	specific	func*on.

Custom	hardware	implemented	on	the	same	chip	
Tightly	integrated	with	the	microcontroller	
XBs	can	access	the	same	register	space	

Integrate	with	the	instruc*ons	of	the	microcontroller

Xcelerator	Blocks

Available XBs 
• Floa*ng	Point	Math	
• Servo	Control	
•NeoPixel	Control	
• Enhanced	Analog-to-Digital	Func*onality

XB Roadmap 
•Event	Counters	and	Timers	
•Quadrature	Encoders/Decoders	
• Pulse	Width	Modula*on	(PWM)	
• Propor*onal-Integral-Deriva*ve	(PID)	control	
•Mul*ple	UARTS



OpenXLR8

HDL

Methodology	that	allows	XLR8	users	to	develop	their	
own	Xcelerator	Blocks	and	upload	them	to	the	FPGA.



Module-Level	Design	and	SimulaRon

alorium_lfsr_tb.v

LFSR

Testbench

alorium_lfsr.v

LFSR	Module	Design

Simulation	
Testbench

• Pseudorandom	Number	Generator	
• Using	a	Linear	Feedback	Shift	Register	(LFSR)	
• 8-bit	
• 4-tap



IntegraRon	into	XLR8

xlr8_lfsr.v

alorium_lfsr.v

xlr8_top.v

xlr8_lfsr.v

alorium_lfsr.v

xlr8_d_mem

xlr8_avr_core

xlr8_p_mem

xlr8_gpio

XLR8	Wrapper

XLR8	Top-Level		
Verilog

XLR8	Core	
Components



Synthesis
xlr8_top.v

xlr8_lfsr.v

alorium_lfsr.v

xlr8_d_mem

xlr8_avr_core

xlr8_p_mem

xlr8_gpio

RPD	
FPGA	

Programming	File

xlr8_top.v

Optional	–	Not	Today…



Upload	to	FPGA

XLR8	
RPD



Run	Sketch



Let’s	Dive	In!



Building	an	LFSR	on	an	FPGA

HDL



Linear	Feedback	Shift	Register	(LFSR)

D Q D Q D Q D Q D Q D Q D Q D Q
0 1 2 3 4 5 6 7

 assign feedback = ~(lfsr_data[7] ^ lfsr_data[5] ^ lfsr_data[4] ^ lfsr_data[3]);

XNOR



Software	Function	vs	Generated	Assembly	Code



• RTL	=	Register-Transfer	Level	
• HDL	code	
• Verilog/SystemVerilog	
• VHDL	

• The	LFSR	module,	alorium_lfsr.v

RTL	for	the	LFSR



• The	testbench,	alorium_lfsr_tb.v

Testbench



• Start	Modelsim	
• File	->	New	->	Library…	
• Create	the	default	“work”	library	inside	
of	our	project	RTL	directory	

• Compile	->	Compile…	
• Select	alorium_lfsr.v	and	
alorium_lfsr_tb.v	

• “Compile”	and	then	“Done”	
• Open	the	testbench	in	the	work	area

Simulating	the	Testbench



• Select	our	testbench	signals	and	
bring	them	into	a	waves	window	

• Hit	the	“Run	–all”	button

Simulating	the	Testbench	Continued



• xlr8_lfsr.v	
• Connects	the	signals	from	the	XLR8	core	to	
the	LFSR	module	

• Instantiates	the	alorium_lfsr	module	
• Controls	register	access

XLR8	Module



LFSR	Control Address	0xE0

Bit 7 6 5 4 3 2 1 0

Function Unused Freerunning	
Mode

R/W R R R R R R R R/W

Initial 0 0 0 0 0 0 0 0

LFSR	Seed Address	0xE1

Bit 7 6 5 4 3 2 1 0

Function LFSR	Seed	Data

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Initial 0 0 0 0 0 0 0 0

LFSR	Data Address	0xE2

Bit 7 6 5 4 3 2 1 0

Function LFSR	Result	Data

R/W R R R R R R R R

Initial 0 0 0 0 0 0 0 0

Register	Definitions



• xb_adr_pack.vh	
• Declare	the	address	locations	of	your	
registers	

• Refer	to	the	XLR8	User	Manual	to	find	
open	register	space

XB	Addresses



Integration	into	XLR8

xlr8_lfsr.v

alorium_lfsr.v

xlr8_top.v

xlr8_lfsr.v

alorium_lfsr.v

xlr8_d_mem

xlr8_avr_core

xlr8_p_mem

xlr8_gpio

XLR8	Wrapper

XLR8	Top-Level		
Verilog

XLR8	Core	
Components



• xlr8_top.v	
• Instantiate	the	xlr8_lfsr	module	
• Add	the	control	signals	to	
“stgi_xf_io_slv_dbusout”	and	
“stgi_xf_io_slv_out_en”

XLR8	Top



• xlr8_top.qsf	under	the	“quartus”	
directory	

• Add	in	our	module	files	and	the	register	
address	file

Modify	the	Project	QSF	File



• Go	to	Sketch	->	Include	Library	->	Manage	
Libraries…	

• Search	for	“XLR8”	and	install	XLR8Core	
and	XLR8BuildTemplate	

• Go	to	Tools	->	Board	->	Boards	Manager…	
• Search	for	“XLR8”	and	install	Alorium	
XLR8	Boards

Arduino	IDE	Setup



Synthesis
xlr8_top.v

xlr8_lfsr.v

alorium_lfsr.v

xlr8_d_mem

xlr8_avr_core

xlr8_p_mem

xlr8_gpio

RPD	
FPGA	

Programming	File

xlr8_top.v

Optional	–	Not	Today…



• Open	Quartus	and	open	our	project	
QPF	file	with	File	->	Open	Project…	
• Begin	the	compile	with	Processing	->	
Start	Compilation	
• After	compilation	is	completed,	File	->	
Convert	Programming	Files…	
• Open	Conversion	Setup	Data,	open	
“openxlr8.cof,”	and	Generate

Compile	the	Project	in	Quartus



Upload	to	FPGA

XLR8	
RPD



• Open	the	Arduino	IDE	
• Under	Tools	->	Board	select	OpenXLR8	
• Connect	your	board	via	USB	and	make	
sure	it	is	selected	in	Arduino	under	
Tools	->	Port	

• Tools	->	Burn	Bootloader

Burn	the	FPGA	Image



• XLR8_LFSR.h	
• Defines	the	same	register	
addresses	as	in	the	RTL	

• Sets	and	reads	the	LFSR	registers

Arduino	Library	for	the	LFSR



• Include	the	XLR8_LFSR.h	
• Set	the	seed,	enter	a	loop	to	print	the	
result	of	the	LFSR	to	serial	output	

• Compile	and	run	on	the	board

Arduino	LFSR	Example



Assembly	Code:	Software	vs	FPGA



Q&A


